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Down syndrome (DS) is the most common genetic cause of Alzheimer’s disease (AD)

due to trisomy for all or part of human chromosome 21 (Hsa21). It is also associated

with other phenotypes including distinctive facial features, cardiac defects, growth delay,

intellectual disability, immune system abnormalities, and hearing loss. All adults with

DS demonstrate AD-like brain pathology, including amyloid plaques and neurofibrillary

tangles, by age 40 and dementia typically by age 60. There is compelling evidence that

increased APP gene dose is necessary for AD in DS, and the mechanism for this effect

has begun to emerge, implicating the C-terminal APP fragment of 99 amino acid (β-CTF).

The products of other triplicated genes on Hsa21 might act to modify the impact of APP

triplication by altering the overall rate of biological aging. Another important age-related

DS phenotype is hearing loss, and while its mechanism is unknown, we describe its

characteristics here. Moreover, immune system abnormalities in DS, involving interferon

pathway genes and aging, predispose to diverse infections and might modify the severity

of COVID-19. All these considerations suggest human trisomy 21 impacts several

diseases in an age-dependent manner. Thus, understanding the possible aging-related

mechanisms associated with these clinical manifestations of DS will facilitate therapeutic

interventions in mid-to-late adulthood, while at the same time shedding light on basic

mechanisms of aging.
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Abbreviations: ABR, auditory brainstem response; ACE2, angiotensin-converting enzyme 2; AD, Alzheimer’s disease;
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response; MCP-1, monocyte chemoattractant protein-1; MDA5, melanoma-differentiation-associated protein-5; mTOR,

the mammalian target of rapamycin; MVB, multivesicular bodies; NFTs, neurofibrillary tangles; p-tau, phosphorylated

tau; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α; PRR, pathogen recognition receptor;

PS1, presenilin-1; RIG-I, retinoic acid-inducible gene 1 protein; SNV, single nucleotide variant; TLRs, toll-like receptors;

TMPRSS2, transmembrane protease serine 2; TNF-α, tumor necrosis factor-α; Ts21, trisomy 21; α-CTF, C-terminal APP

fragment of 83 amino acids.
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INTRODUCTION

Down syndrome (DS), associated with trisomy 21 (Ts21),

occurs in 1 in ∼800 live births, leading to an estimated

200,000–250,000 people with this condition in the US (Bull,

2020). It is the most common genetic cause of developmental

intellectual disability and early-onset Alzheimer’s disease (AD)

with very high penetrance (Dierssen, 2012; Strydom et al., 2018;

Antonarakis et al., 2020). Children and adults with DS also

have an increased incidence of several other important medical

conditions that are discussed here. With improved medical

care and social support, life expectancy in DS has substantially

risen to 60 years, with many living into their 70s (Bittles and

Glasson, 2004; Henderson et al., 2007). However, with this

increased lifespan, more individuals with DS become affected

by age-related clinical phenotypes, a problem that is thought to

be aggravated by accelerated biological aging in this syndrome.

Thus, research on age-related phenotypes in the DS is becoming

increasingly active and important. In this review, we discuss

DS-associated AD, age-related hearing loss, bacterial and viral

infections including COVID-19, and other age-related medical

conditions in DS (Figure 1A) that we are investigating in

our laboratories.

MECHANISMS OF ALZHEIMER’S DISEASE
IN DOWN SYNDROME

Alzheimer’s Disease-Related Dementia
and Neuropathology in DS
Dementia is defined as a decline in cognitive function sufficient

to interfere with a person’s ability to conduct a normal daily

life. AD is the most common type of dementia with clinical

manifestations including memory loss, language problems,

cognitive decline, and behavior dysfunction (Scheltens et al.,

2016). AD dementia follows a progressive course in which early

subtle changes in memory are followed in time by worsening

function, leading to the inability to carry out many facets of daily

life, with the disintegration of personality (DeTure and Dickson,

2019). DS, the most common genetic cause of AD, is due to

trisomy for all or part of chromosome 21 (Hsa21; Figure 1A).

Due to the increased dosage of genes on Hsa21, DS presents with

findings related to dysfunction of multiple body systems. Clinical

manifestations apparent even in the newborn period are changes

in craniofacial anatomy. Compromised cognition and the delays

in development of intellectual and behavioral milestones are

essentially universal in children (Antonarakis et al., 2020). By age

40, almost all individuals with DS show AD-like neuropathology

and by age 56 fully one-half are diagnosed with dementia

(Chen and Mobley, 2019a). The prevalence of dementia in DS

was reported to range from 30 to 75%; some studies estimate

greater than 80% of dementia beyond age 65 (Zigman et al.,

1997; Hithersay et al., 2017). Clinical and neuropathological

similarities justify the designation of AD in DS (AD-DS).

The neuropathological changes in AD-DS are much like those

in non-DS AD, including amyloid plaques and neurofibrillary

tangles (NFTs). Amyloid plaques are extracellular accumulations

of amyloid derived from Aβ peptides of various lengths, which

FIGURE 1 | (A) The relationship between Hsa21 and age-related clinical

phenotypes. (B) Hsa21 gene orthologs which play important roles in Down

syndrome (DS)-associated dementia and other age-related clinical

phenotypes.

are products of Amyloid Precursor Protein (APP) processing

(Figure 1B, see below; Chen and Mobley, 2019a; Lott and

Head, 2019). In AD, however, deposition of Aβ in amyloid

plaques routinely fails to show a correlation with dementia, while

there is a consistent correlation between disease progression

and NFTs. The latter are composed of aberrantly folded and

abnormally phosphorylated tau (p-tau; Chen and Mobley,

2019a). A recent study confirms the same pattern for AD-

DS. Comparing DS with and without dementia with respect to

cortical and striatal plaques and tangles showed that plaques did

not predict AD in DS subjects, while abnormal tau aggregation

in tangles was correlated with dementia (Perez et al., 2019).

The neuropathological features shared between non-DS and

DS-associated AD have been recently reviewed (Chen and

Mobley, 2019a; Lott and Head, 2019).

Role of APP Triplication in AD-DS
Rare cases of early-onset AD are due to duplication of a small

APP gene-containing chromosomal segment (Figure 1B), which

is evidence that increased APP gene dosage is sufficient to

cause AD (Cabrejo et al., 2006; Sleegers et al., 2006). The

evidence is likewise compelling that increased APP copy number

is necessary for AD-DS (Prasher et al., 1998; Doran et al.,

2017). Neuropsychological and pathological studies in two partial

trisomy DS subjects demonstrated sharing of several typical

phenotypic features of DS (short stature, Brushfield spots,
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hearing problems, etc.). Though harboring duplicated segments

of varying length, in both cases the APP gene was present in two,

not three, copies. Both died at advanced age free of dementia

and the neuropathological hallmarks of AD (Prasher et al., 1998,

Doran et al., 2017). These data converge with those in mouse

models to demonstrate the necessity of increased App gene

dose for AD-relevant phenotypes in DS (Salehi et al., 2006,

2009). Although triplication of other genes in Hsa21 has been

explored for an effect on AD-linked neuropathologies in DS

mouse models, direct evidence linking any other triplicated gene

to AD pathology is as yet lacking. Nevertheless, it is likely that

other genes will contribute. For instance, DYRK1A (Figure 1B)

was shown to impact APP processing (Branca et al., 2017)

and modify tau phosphorylation (Ryoo et al., 2007). Rcan1 can

also modulate tau phosphorylation by both decreasing p-tau

dephosphorylation and increasing tau phosphorylation (Lloret

et al., 2011; Figure 1B). Reduction of synaptojanin 1 improved

amyloid-induced neuropathology and behavior deficits through

accelerating Aβ clearance in one human Swedish APP and

FAD (familial AD)-linked PS1 (presenilin-1) double mutant

transgenic mouse (Zhu et al., 2013; Figure 1B). Moreover,

synaptojanin 1 was also linked to enlargement of early endosome

in DS (Cossec et al., 2012).

APP is a type 1 transmembrane protein and can be processed

by two pathways: the non-amyloidogenic pathway and the

amyloidogenic pathway. In the former, APP is sequentially

cleaved by α-secretase to produce the soluble fragment sAPPα

and α-CTF (C-terminal APP fragment of 83 amino acids); in the

latter, APP is cleaved by β-secretase to form sAPPβ and β-CTF

(C-terminal fragment of 99 amino acids). α-CTF is then cleaved

by γ-secretase to yield the APP intracellular domain (AICD)

and the P3 peptide; cleavage of β-CTF yields the same AICD

and Aβ peptides of varying length (Zhang et al., 2011; Chen

and Mobley, 2019a). Triplication of APP gene in DS predicts

increased levels in APP and its products (Nistor et al., 2007; Iulita

et al., 2014; Chen X. Q. et al., 2021). Consistently, reducing APP

gene dose to two by CRISPR/Cas9 in DS induced pluripotent

stem cells (iPSCs)-derived cortical neurons almost normalized

the levels of APP, Aβ42, and the Aβ42/40 ratio (Ovchinnikov

et al., 2018). APP and Aβ peptide have been linked to tau

pathology in several studies (Hardy and Selkoe, 2002; Kwak et al.,

2020), however, this conclusion was contested when normalizing

APP gene dose in DS iPSC-derived neurons did not impact tau

hyperphosphorylation (Ovchinnikov et al., 2018). In contrast, we

found that treating with Posiphen to normalize APP levels in the

Ts65Dnmouse reduced the levels of not only Aβ42 but also p-tau

to levels in the brains of 2N (i.e., euploid) mice (Chen X. Q. et al.,

2021; Chen, 2021). Considering that protein products of other

triplicated genes on Hsa21, including Dyrk1a and Rcan1, have

been shown to contribute to tau hyperphosphorylation in DS

(Antonarakis et al., 2020), whether or not and to what extent

APP and/or its products are linked to tau pathology need further

elucidation. Nevertheless, evidence supporting a role for APP

gene dose in both Aβ and tau-related pathologies were those for

the two partial Ts21. Neither of them showed the senile plaques

or NFTs typical of the AD-DS brain (Prasher et al., 1998; Doran

et al., 2017).

AD-Associated Features in DS: Endosomal
Abnormalities
DS mouse models support research on mechanisms leading to

AD-DS (Davisson et al., 1990; Yu et al., 2010a; Herault et al.,

2017). Due to App gene dosage, APP along with its processing

products including CTFs and Aβ peptides is significantly

increased in Ts65Dn mice. Normalizing App gene copy number

in these mice (Ts65DnAPP++-) restored the levels of APP and its

CTFs (Salehi et al., 2006). It was noted that in Ts65DnAPP++-

mouse, reduced NGF transport in basal forebrain cholinergic

neurons (BFCNs), as well as the BFCN atrophy, were both

significantly improved, pointing to defective retrograde signaling

of NGF as contributing to BFCN loss (Salehi et al., 2006). Further

studies linked the deficits in NGF axonal transport to abnormal

early endosome pathologies including endosome enlargement

and Rab5 hyperactivation (Xu et al., 2016).
Apparent enlargement of early endosomes due to excessive

activation of small GTPase Rab5 is another shared hallmark of

AD in non-DS and DS, one that emerges decades before the

appearance of amyloid plaques and NFTs (Cataldo et al., 2000;

Chen and Mobley, 2019b). A recent study using ultrastructural

methods found that endosomes were clustered in fibroblasts

and DS induced pluripotent stem cells (iPSCs)-derived cortical

neurons from DS individuals and BFCNs of the Ts65Dn DS

mouse model (Botte et al., 2020). They interpreted these findings

as evidence that clustering of endosomes is responsible for

their apparent enlargement. Whether enlarged or clustered, the

significant upregulation in the levels of active Rab5 (GTP-loaded

Rab5), which drives endosome fusion, support the importance

of changes in early endosomes in DS and AD-DS, as well as in

non-DS AD (Xu et al., 2016; Chen X. Q. et al., 2021). Evidence

from multiple studies using APP knockdown, the Ts65DnAPP++-

mouse, and APP/β-CTF overexpression support that increased

APP gene dose induces early endosome enlargement and point

to β-CTF as the major driver of this change (Salehi et al., 2006;

Jiang et al., 2010; Kim et al., 2016; Xu et al., 2016; Figure 2A).
Importantly, β-CTF mediated atrophy was prevented by a

dominant negative version of Rab5 pointing to an essential

role for Rab5 hyperactivation in this process (Xu et al., 2016).

The roles of App gene dose in abnormal endosome phenotypes

and deficient axonal transport of neurotrophin signaling were

further supported by a recent study in which Posiphen reversed

Rab5 hyperactivation, restored the size of early endosomes,

and restored retrograde axonal transport of neurotrophins in

primary cortical Ts65Dn neurons and of neurotrophin signaling

in the Ts65Dn brains, with the drug acting, at least in part,

through reducing the levels of APP and CTFs in a translation-

dependent manner (Chen X. Q. et al., 2021). These data are

evidence that increased APP gene dose in DS, along with

increased levels of APP and its products, including β-CTF,

acts to induce Rab5 hyperactivation and reduce retrograde

transport of neurotrophin signaling, thus linking APP gene dose

to neurodegeneration.
Early endosomes are upstream of late endosomes and

multivesicular bodies (MVB) whose contents are then

moved to lysosomes (Grant and Donaldson, 2009). The

MVB is a specialized endosome characterized by intraluminal
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FIGURE 2 | Schematic representations of the specific examples of the relationship between the triplication of Hsa21 or Hsa21 gene ortholog(s) and its phenotypic

consequences at various levels. (A) The triplication of the APP ortholog and its impacts on Alzheimer’s disease (AD)-related phenotypic features: increased APP gene

dose in DS leads to increases in full-length APP protein and its products, including CTF (α-CTF and β-CTF) and Aβ peptides of varying length. Accumulating

evidence points to β-CTF as driving endosomal dysfunction, lysosomal dysregulation, autophagy impairment as well as mitochondrial dysfunction. Abnormal early

endosomes may contribute to deficits in the retrograde axonal transport of neurotrophic signaling in several neuron populations, including BFCNs, thus

compromising their trophic support and leading to neuronal dysfunction and atrophy. Lysosomal dysregulation and autophagy impairment can allow for the build-up

of toxic proteins and induce oxidative stress due to failed clearance of organelles, including mitochondria. β-CTF accumulation could also lead to mitochondrial

dysfunction. In addition, increased Aβ peptides contribute to amyloid plaque formation; evidence supports a role for Aβ in tau pathology, but as yet there is no direct

demonstration for this in DS. Autophagy-lysosomal system dysfunction also contributes to amyloid and tau pathologies. (B) The triplication of Hsa21 or Hsa21 gene

orthologs and its impacts on the immune system and COVID-19 in the DS population: The dosage increase of the four interferon receptor genes in Ts21, IFNAR1,

IFNAR2, IFNGR2, and IL10RB, up-regulates expression of interferon-stimulated genes (ISGs), which in turn results in immune dysregulation, including alteration of

immune cell numbers as well as an imbalance between pro-inflammatory and anti-inflammatory mediators. These changes in DS are likely related to a higher risk for

more severe COVID-19, which may also be contributed by the dosage increase of TMPRSS2 and early aging. BFCNs, basal forebrain cholinergic neurons; α-CTF,

C-terminal APP fragment of 83 amino acids.

vesicles (ILVs) that bud inward into the endosomal lumen.

If an MVB fuses with the plasma membrane, the ILVs

can be released into the extracellular space as exosomes

(Hanson and Cashikar, 2012). Suggested to serve as a buffering

mechanism to alleviate endosomal dysfunction, exosome release

from MVBs is increased in DS brains and Ts21 fibroblasts as

well as in DS mouse models, possibly through the enhanced

expression of CD63 which regulates exosome biogenesis

(Gauthier et al., 2017). Upregulation of intraluminal vesicles

(ILVs) in MVBs was reported in the Ts2Cje model of DS

(D’Acunzo et al., 2019). It is noteworthy that exosomes

contain APP-derived metabolites raising the possibility of

a protective role in removing toxic products, including the

C-terminal fragment of 99 amino acids (β-CTFs) and Aβ species
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(Perez-Gonzalez et al., 2020). If exosomes play this role, they

may enhance Aβ clearance through a microglial cell-dependent

pathway. However, as a mediator of intercellular communication

exosomes might also propagate and spread Aβ- and tau-related

pathologies within neuronal circuits (Mathews and Levy, 2019).

Dysregulation of the retromer complex system, which sorts and

traffics proteins from endosomes to the trans-Golgi network or

the cell surface, was also recently reported to be an early event

in the development of AD pathology and cognitive decline in

DS (Curtis et al., 2020). Finally, there is evidence pointing to

lysosome-autophagy deficits in DS (reviewed in Nixon, 2017;

Colacurcio et al., 2018).

In addition to disrupting early endosomes, β-CTF was also

shown to mediate APP-induced dysfunction of the lysosomal

system through affecting the expression and maturation and/or

activity of lysosomal enzymes including cathepsin D, possibly

through APP-induced abnormal lysosomal acidification in DS

fibroblasts and the Ts2 mouse model (Jiang et al., 2019).

These findings were supported in studies in an AD mouse

model (3xTgAD) and adeno-associated viral-mediated β-CTF-

infected mice (Lauritzen et al., 2016; Figure 2A). In the latter,

the aggregation of β-CTF in endosomal-autophagic-lysosomal

vesicles caused disrupted lysosomal proteolysis and autophagic

impairment (Lauritzen et al., 2016).

AD-Associated Features in DS:
Mitochondrial Deficits
Mitochondria are membrane-bound organelles that supply ATP

as a source of energy for cell function, and mitochondrial

dysfunction is another hallmark of DS (Izzo et al., 2018).

Several lines of evidence suggest that impaired activity of

peroxisome proliferator-activated receptor gamma coactivator

1α (PGC-1α) and hyperactivation of the mammalian target of

rapamycin (mTOR) kinase contribute to this dysfunction (Mollo

et al., 2020). Mitophagy, which clears damaged mitochondria,

was recently demonstrated to be deficient in DS fibroblasts

leading to the accumulation of damaged mitochondria. This

study showed that reductions in PARKIN and PINK1 impaired

initiation of mitophagy, together with hyperactivation of

mTOR (Bordi et al., 2019). Consistently, inhibition of mTOR

with rapamycin reduced APP levels and attenuated the

neurodegenerative phenotypes linked to APP overexpression in

Ts65Dn mice (Tramutola et al., 2018). A role of ‘‘mitovesicle’’,

a recently defined extracellular vesicle containing mitochondrial

components, was suggested as further reflecting mitochondrial

pathology in DS (D’Acunzo et al., 2021).

Accumulation of damaged mitochondria is associated with

oxidative stress (Bordi et al., 2019), and recent studies linked

mitochondrial defects and oxidative stress with insulin resistance

in the development of AD pathology in DS (Lanzillotta et al.,

2021). Oxidative stress can drive protein oxidation and the

formation of protein aggregates (Lanzillotta and Di Domenico,

2021) which are then cleared by protein quality control

systems. Among the latter, the integrated stress response (ISR)

downregulates protein synthesis to respond to stress. ISR was

shown to be activated in the brains of Ts65Dn DS mouse models

and DS patients, and suppression of the ISR reversed changes

in translation and rescued deficits in synaptic plasticity and

long-term memory (Zhu et al., 2019).

A possible link between β-CTF and abnormal mitochondrial

structure and function as well as mitophagy defects

was supported. The β-CTF was demonstrated to induce

mitochondrial morphology alterations and overproduction of

mitochondrial reactive oxygen species and to elicit mitophagy

failure (Vaillant-Beuchot et al., 2021; Figure 2A). Moreover,

β-CTF was shown to accumulate in mitochondria-associated

membranes and to regulate extracellular cholesterol uptake and

trafficking (Montesinos et al., 2020). Though not documented

in the context of DS, accumulation of β-CTF has also been

linked to inflammation, synaptic dysfunction as well as behavior

deficits in the mouse. The unique contribution of β-CTF to AD

pathology has been reviewed (Checler et al., 2021). In addition,

the contribution of APP gene dose-induced increases in Aβ

peptides including those toxic Aβ oligomers has been extensively

explored and reviewed (Head et al., 2016; Chen and Mobley,

2019a).

AD-Associated Features in DS:
Neuroinflammation
In addition, neuroinflammation, involving microglial cells

and astrocytes, is presumed to represent a response to

Aβ and tau pathologies, with the inflammatory events and

the transcriptional pathways thus engaged being viewed as

contributing to brain pathology in AD (Wilcock, 2012; Kinney

et al., 2018; Nott et al., 2019). A recent neuropathology

study characterized an early and evolving neuroinflammatory

phenotype across the lifespan in DS, with a higher microglial

soma size-to-process length ratio and increased levels of

several inflammatory cytokines observed in autopsy brains of

children and young adults with DS (Flores-Aguilar et al., 2020).

Consistently, in the Dp(16)1Yey mouse model of DS microglia

were hyperactivated, with increased pro-inflammatory cytokine

levels and altered interferon signaling in the hippocampus,

and with decreased spine density and activity of hippocampal

neurons and hippocampus-dependent cognitive behavioral

deficits (Pinto et al., 2020). Both pharmacological depletion

of defective microglia and anti-inflammatory treatment with

acetaminophen rescued the deficits in these mice, suggesting a

link between aberrant microglia and cognitive dysfunction in

Dp(16)1Yey (Pinto et al., 2020). But how such treatments can

overcome the impact of important triplicated genes, such as

Dyrk1a, in the mouse model remains to be revealed, in light of

the relationship betweenDyrk1a and inflammation (Latour et al.,

2019).

Unlike non-DS AD, the brain in DS harbors triplication

of many inflammation-related genes, including SOD1, S100B,

and genes encoding multiple interferon receptors and several

interferon target genes on Hsa21, raising the possibility that

DS constitutes a unique environment for the inflammatory

signals characteristic of AD neuropathology (Figure 1B;

Wilcock, 2012). Interestingly, USP25, a deubiquitinating enzyme

encoded on Hsa21 (Figure 1B), has been linked to aberrant

microglia activation as well as deficient synaptic and cognitive

function. Both genetic ablation and pharmaceutical inhibition
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of USP25 reduced microglia-mediated neuroinflammation and

restored synaptic and cognitive function in the 5xFAD mouse

model of AD (Zheng et al., 2021).

HEARING LOSS IN DOWN SYNDROME

DS is characterized by a variety of craniofacial anomalies such

as softening of the tissue above the larynx (laryngomalacia)

and narrowing of the trachea, conditions that contribute

to obstructive sleep apnea, voice disorders, and articulatory

impairments (Vicente et al., 2020). Individuals with DS tend

to have small ears suggestive of the potential for hearing

impairments (Aase et al., 1973) The incidence of hearing

impairment is relatively high in DS (Keiser et al., 1981; Roizen

et al., 1993; Laws and Hall, 2014), with hearing loss ranging

from 34% to 78% for children (Shott et al., 2001; Yam et al.,

2008; Raut et al., 2011). The nature of this hearing loss and its

developmental progression is varied and may depend on the

nature of the craniofacial anomalies (Diefendorf et al., 1995).

Conductive Hearing Loss
DS generally impairs the transmission of sound through the

external ear and middle ear giving rise to what is referred

to as a conductive hearing loss—which is characterized by a

loss in hearing sensitivity over a broad range of frequencies,

unlike sensorineural hearing loss that preferentially affects

the high frequencies. In some cases, the craniofacial disorder

involves a malformation of the external ear or substantial

narrowing of the ear canal. In severe cases, the ear canal can

be occluded (atresia) which attenuates sound transmission to

the cochlea where the sensory hair cells are located (Diefendorf

et al., 1995). The maximum conductive hearing loss is

approximately 40 dB.

The medial end of the ear canal terminates at the tympanic

membrane, a thin, translucent membrane that separates the

external ear from the middle ear. The middle ear space, which

consists of an air-filled cavity in the mastoid bone, is connected

to the pharyngeal cavity by the Eustachian tube. The Eustachian

tube serves to equalize pressure in the middle ear space with the

external pressure in front of the tympanicmembrane. Themiddle

ear ossicles composed of three extremely small bones (malleus,

incus, and stapes) slightly amplify the sound-induced vibrations

relayed from the tympanic membrane to the cochlea. One of the

most common problems in DS is Eustachian tube malformation

that can result in recurrent middle ear infections that can lead

to otitis media with effusion. The fluid in the middle ear greatly

attenuates the transmission of sound to the cochlea.

Otoscopy can be used to visualize inflammation of the

tympanic membrane, fluid buildup in the middle ear, and

rupture of the membrane. Middle ear function can be

evaluated with impedance-admittance audiometry which

involves inserting a specialized probe into the external ear.

The device can detect abnormal middle ear pressure, tympanic

membrane rupture, immobility of the tympanic membrane

caused by fluid in the middle ear, or hypermobility of the

tympanic membrane caused by disarticulation of the middle

ear ossicles. Among young DS patients with hearing loss, more

than 80% were attributed to conductive hearing loss, mostly due

to middle ear effusion (Schwartz and Schwartz, 1978; Austeng

et al., 2013). Other factors implicated in conductive loss included

immobility or deformities to the middle ear ossicles (Balkany

et al., 1979). Histological analysis of temporal bones from DS

patients revealed numerous differences in the dimensions of the

middle ear space and shortening of the length of the cochlea

(Igarashi et al., 1977; Harada and Sando, 1981).

Aging and Sensorineural Hearing Loss
Hearing loss inDS can also result from damage to the sensory and

neural structures in the cochlea. Some have reported that< 5% of

DS patients suffer from sensorineural hearing loss (De Schrijver

et al., 2019) whereas others estimate 53% of the cases are of

sensorineural origin (Glovsky, 1966; Brooks et al., 1972). One

factor that could contribute to the diversity of results is the

age of the subjects. Adults are much less likely than children

to develop a middle ear infection but are more likely to have

sensorineural hearing loss due to aging (presbyacusis) or other

factors (Buchanan, 1990).

Most age-related disorders in DS begin around 40,

approximately 20 years earlier than the general population

(Martin, 1978; Steingass et al., 2011; Carfi et al., 2014; Glasson

et al., 2014). To assess the rate of age-related hearing loss in DS,

subjects with conductive or mixed hearing loss were excluded

from the analysis (Buchanan, 1990). Sloping, high-frequency

sensorineural hearing loss characteristic of age-related hearing

loss was evident in young DS subjects. Hearing losses in DS

reached 90 dB HL in the 51–60 years age group, compared to

50 dB HL in age-matched controls. Age-related hearing loss

occurred 20–30 years earlier in DS than controls, indicating that

DS accelerates age-related hearing loss, consistent with other

reports (Picciotti et al., 2017).

Histological analysis of temporal bones of elderly DS subjects

revealed excessive bone growth and blockade of the canals in the

bone through which the peripheral auditory nerve fibers of the

spiral ganglion travel out to contact the sensory hair cells in the

cochlea (Krmpotic-Nemanic, 1970). Others have used computed

tomography to evaluate adult DS subjects, and while no ossicular

malformations were detected, vestibular and other inner ear

malformations were observed in nearly half of DS subjects (Saliba

et al., 2014).

Central Auditory Dysfunction
Hearing problems in DS may also relate to auditory structures

in the central nervous system. Brain imaging studies indicate

total brain volume is reduced by roughly 20% in DS subjects,

with major reductions in the brainstem, hippocampus, temporal

lobe, and cerebellum (Fujii et al., 2017; Rodrigues et al., 2019).

These changes may be due stunted dendrite growth and atrophy

(Becker et al., 1991), changes that could disrupt sound-evoked

neural activity in the central auditory pathway. The auditory

brainstem response (ABR) is an electrophysiological technique

used to assess sound-evoked neural activity in the brainstem. In

humans, the ABR waveform consist of five positive and negative

peaks, numbered I, II, III, IV and V, occurring 1–7 ms following

stimulus onset. Among young adults, the amplitudes of the click-
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evoked peaks in the ABR waveform were smaller in DS than

controls. Stimulus intensities needed to elicit the ABR responses

were higher in DS than in controls, indicative of hearing loss and

the slope of the latency vs. intensity function in DS was steeper

than in controls consistent with a high-frequency sensorineural

hearing loss (Widen et al., 1987). In DS infants 12 months or

younger, the absolute latencies of the ABR peaks were shorter

than normal and the slope of the latency-intensity functions was

steeper than normal (Folsom et al., 1983). Others have reported

that the interval between peaks I–II and III–IV were shorter than

normal in DS, whereas the IV–V interval was longer than normal

(Squires et al., 1980) possible due to a smaller brain size or other

brainstem abnormalities.

Animal models can be used to explore the mechanisms

underlying conductive, sensorineural, and age-related hearing

loss in DS. Most of our efforts and those of others have mainly

focused on identifying genomic regions associated with the

development of otitis media in DS based on analysis of mouse

models triplicated for different Hsa21 orthologous regions (Han

et al., 2009; Bhutta et al., 2013; Chen et al., 2013). In Ts65Dnmice,

which share many phenotypic characteristics with DS, middle

ear effusions were present in nearly 75% of these mice whereas

effusions were rare in WT controls. The middle ears in these

mice showed varying degrees of inflammation, thickening of

the middle ear mucosae, and the presence of goblet cells and

pathogenic bacteria (Han et al., 2009).

Additional efforts are underway to model and mechanistically

understand the origins of hearing disorders in various DS mouse

models. One of the problems associated with many mouse

models is that they were developed on background strains

that exhibit early-onset age-related hearing loss such as the

widely used C57BL strain. This strain carries a single nucleotide

variant (SNV) of the cadherin 23 gene (Cdh23c.753A) that causes

age-related hearing loss in wild-type C57BL mice (Johnson et al.,

2017). Therefore, this variant should be removed to investigate

age-related hearing loss in DS.

The ABR, widely used to investigate age-related hearing loss

in mice (Boettcher, 2002; Konrad-Martin et al., 2012; Johnson

et al., 2017; Grose et al., 2019), can also be used to assess auditory

function in DS mouse models (Widen et al., 1987; Johnson et al.,

2017). Tone burst-evoked ABR provides a useful method for

assessing function at different frequencies and estimating the

amount of hearing loss at different frequencies. In preliminary

studies, we have measured ABR thresholds in a small cohort

of DS mice (Yu et al., 2010b) backcrossed for four generations

on CBA/J mice a strain that shows little evidence of age-related

hearing impairment until extremely late in life so B6-specific

age-related Cdh23c.753A allele has been converted to CBA/J-

specific Cdh23c.753G (Spongr et al., 1997; Zheng et al., 1999;

Han et al., 2016). Our preliminary results from 3-month-old

mice revealed slightly elevated (∼25 dB) ABR thresholds and

slightly reduced ABR amplitudes in DS mice compared to WT

mice. Thresholds in DS mice were elevated over a wide range

of frequencies, results indicative of a conductive hearing loss

(Bhutta et al., 2013). However, histological results are needed to

assess the status of the middle ear and cochlea. To determine

if age-related hearing loss is more rapid in DS mice, ABR

thresholds in DS and WT will be monitored to determine the

rate at which age-related hearing loss develops. Afterward, the

cochlea will be evaluated to determine the percentage of missing

outer hair cells and inner hair cells. Outer hair cell and inner hair

cell losses in DS and WT mice will be compared to determine if

age-related sensory cell losses are more severe and develop more

rapidly in DSmice compared toWTmice (McFadden et al., 1999;

Johnson et al., 2010).

Is Hearing Loss Related to Cognitive
Decline and Dementia in DS?
Although hearing loss is mainly considered a sensory disorder,

the communication difficulties that it imposes often contribute

to social isolation and depression. Recent meta-analyses of

human data indicate that age-related hearing loss has a

significant association with adverse health outcomes. One

of the most unexpected findings was that hearing loss was

positively correlated with age-related cognitive decline, cognitive

impairment, and dementia and there was a non-significant

trend for an association with AD. Vascular disorders, social

isolation, or impaired verbal communication were suggested as

contributing factors (Lin et al., 2011; Su et al., 2017).

Animal models could provide mechanistic insights on the

contribution of hearing loss to cognitive decline, dementia,

and AD. Recent animal studies have explored the relationship

between noise-induced hearing loss and cognitive impairment

using hippocampal-dependent maze learning tasks that assess

the acquisition and retention of spatial memory. Hearing loss

was associated with a significant decline in the acquisition

of spatial memory and deficits in spatial memory retention

(memory consolidation; Liu et al., 2016; Park et al., 2016;

Manohar et al., 2020). Importantly, these deficits were associated

a significant decline in hippocampal neurogenesis (Kraus et al.,

2010; Newman et al., 2015; Manohar et al., 2020) and an increase

in p-tau protein and lipofuscin in the hippocampus (Park et al.,

2018). These results are consistent with the view that hearing loss

contributes to cognitive decline, but further studies are needed to

assess if hearing loss contributes to the development of dementia

and AD.

AGING, IMMUNITY, AND INFECTIONS IN
DOWN SYNDROME

DS-Associated Immune Dysregulation:
Role of Interferon Pathways
As reviewed by us recently, people with DS are at increased

risk of various viral and bacterial infections, while at the same

time having a markedly increased susceptibility to autoimmune

disorders (Yu et al., 2020). Here we further discuss potential

mechanisms of dysregulated immunity in DS, including a role

for premature aging, and complete the discussion with some

thoughts on relevance to the current COVID-19 pandemic

(Figure 2B).

The immune system defends against invading pathogens with

fourmain steps: recognize, alert, destroy, and clear (Mueller et al.,

2020). The normal immune response to infection comprises two

parts: the innate and the adaptive immune systems (Bajaj et al.,
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2020). The innate immune system is the first line of defense

against invading microorganisms and ultimately regulates the

adaptive immune response generated by both T and B cells.

Viral infections are first detected in host cells by specific

pathogen recognition receptor (PRR) sensor molecules, such

as the toll-like receptors (TLRs), the retinoic acid-inducible

gene 1 protein (RIG-I), andmelanoma-differentiation-associated

protein-5 (MDA5), which initiate cascades of signaling events

that lead to the expression of immune-regulatory and antiviral

genes, such as interferons (IFNs) and their downstream target

genes (Yoneyama and Fujita, 2010; Murira and Lamarre, 2016).

Indeed, one of the keys linking between Ts21 and immune

dysfunction is IFNs and their receptors. Among six IFN

receptors, four are encoded by genes clustered on chromosome

21: IFNAR1 and IFNAR2, coding for type I IFN receptors;

IFNGR2, coding for type II IFN receptor, and IL10RB, coding

for the receptor required for type III IFN ligands and cytokines

like interleukin-10 (IL-10), IL-22, and IL-26 (Figures 1B, 2B;

De Weerd and Nguyen, 2012; Espinosa, 2020). Over-expression

of these IFN receptors in individuals with DS leads to

hyperactivation of IFN signaling in multiple immune and

non-immune cell types and a significantly higher level of key

cytokines, including C-reactive protein (CRP), IL-2, IL-6, IL-10,

tumor necrosis factor-α (TNF-α), interferon γ-induced protein

10 (IP-10), and monocyte chemoattractant protein-1 (MCP-

1; Sullivan et al., 2016, 2017; Araya et al., 2019; Espinosa,

2020). IFNs are essential for antiviral immunity and play a

key role in immediate antiviral responses to viral infection

in an autocrine and paracrine manner through IFN receptors

(IFNARs) signaling and subsequent induction of hundreds of

interferon-stimulated genes (ISGs; e.g., MX1) to inhibit viral

replication and spread (Bajaj et al., 2020; Nikolich-Zugich et al.,

2020). IFNs also play an important role in immune modulation

and inflammation, as type I IFNs (i.e., IFN-a/b) are often

considered double-edged swords as both proinflammatory and

anti-inflammatory cytokines. Type I IFNs have been associated

with promoting several inflammatory and autoimmune diseases

(Hall and Rosen, 2010; Barrett et al., 2020) and have also

been successfully used for treatment of inflammatory and

autoimmune diseases, such as multiple sclerosis (Kieseier, 2011).

Interestingly, several downstream target genes of IFN signaling,

includingMX1 andMX2, are present on Hsa21 (Figure 1B) and

the MX1 gene was found to be over-expressed to high levels in

Ts21 fibroblasts when these cells entered replicative senescence

(Li et al., 2006), presumably reflecting the known relationship of

MX1 expression and type I IFN signaling to DNA damage and

telomere erosion in cell senescence (Frisch and Macfawn, 2020),

aggravated by the increased gene dosage of both the upstream

and downstream components of the IFN pathway in the cells

with Ts21.

IFN signaling hyperactivation in DS subjects caused by

overexpression of the interferon receptors and target genes

is linked with chronic immune dysregulation, which has

been demonstrated by an abundance of evidence and can be

characterized by being more predisposed to bacterial infection

in the respiratory tracts, weaker response to antibody, and

high level of autoantibodies (Ram and Chinen, 2011; Espinosa,

2020; Gensous et al., 2020). Such an immune dysregulation

also results in an imbalance between proinflammatory and

anti-inflammatory mediators (Hadjadj et al., 2020; Figure 2B).

At the molecular and cellular levels, dysregulation of immunity

in DS is frequently associated with a proinflammatory tendency

when compared with the general population, even in the absence

of any detectable infection. The tendency is reflected by: (A)

changes in the number of different types of immune cells

(monocytes, dendritic cells, nature kill cells, neutrophils, and T

and B cells); (B) overproduction of proinflammatory cytokines,

including TNF-α and IL-6 which, relevant to the discussion

below, are key predictors of deteriorating health conditions in

COVID-19 (Chen et al., 2020; Hadjadj et al., 2020); (C) functional

inhibition of the suppressors, like regulatory T cells (Tregs), a

key factor to suppress immune response after clearing of viral

pathogens (Cetiner et al., 2010; Araya et al., 2019; Espinosa, 2020;

Huls et al., 2021).

Aging and Alteration of the Immune
System in DS
The above observation raises the topic of early or accelerated

aging in DS. Adults with DS experience certain components

of premature aging earlier than the general population, with

some typical features including wrinkled skin, gray hair, hearing

loss, declining immune function, and increased autoimmune

diseases. Using a methodology pioneered by Steve Horvath

(Horvath, 2013), DNA methylation patterns can be utilized as

an ‘‘epigenetic clock’’ that correlates with chronological age

and may reflect underlying biological aging. Both Horvath

and his collaborators (Horvath et al., 2015) and our group

(Mendioroz et al., 2015; Yu et al., 2020) examined epigenetic

aging in human DS, using separate sample sets including blood

cells (total leukocytes, and in our second study purified T

lymphocytes) and brain tissues. Both datasets reveal rapid aging

of CpG methylation patterns during fetal and early postnatal

development in DS, leading to a higher ‘‘set point’’ of epigenetic

age established by young adulthood, followed by maintenance

of this methylation age differential (older in DS than controls),

without further acceleration of the difference, throughout adult

life (Mendioroz et al., 2015; Yu et al., 2020). Because of the

aforementioned association with immune dysregulation and

premature aging, it has been proposed that the DS phenotype

may include immunosenescence (Gensous et al., 2020).

COVID-19 in DS
COVID-19, caused by the SARS-CoV-2 coronavirus, is currently

a major and too often lethal disease worldwide. Since the

clinical outcomes of COVID-19 largely depend on the severity

of inflammation and differ strikingly by age (more severe in

the elderly), studying this disease in DS may prove to be highly

informative. The impacts of COVID-19 on individuals with

DS were illustrated by a recent international survey initiated

by the Trisomy 21 Research Society and the UK ISARIC4C.

One thousand forty-six cases of COVID-19 patients with DS

from April to October, 2020 were analyzed, and the data were

compared with the hospitalized COVID-19 patients with or

without DS in the UK ISARIC4C survey. Based on this study,
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when compared with non-DS COVID-19 patients, COVID-19

patients with DS exhibited more severe symptoms and were

around three times more likely to die. Remarkably, the mortality

rates increased rapidly in patients with DS older than 40 years,

which resembles themortality rate for patients without DS at ages

over 60. The data in the report indicated that individuals with DS,

especially those older than 40 years, are more vulnerable and at

higher risk for hospitalization and death due to COVID-19 (Huls

et al., 2021).

Several factors discussed in the above sections may contribute

to this phenomenon. On the one hand, IFN hyperactivity in

DS may present stronger defenses against the virus during

the initial stage after exposure to SARS-CoV-2, which may

dampen the virus load in the infected site. On the other hand,

over-production of the proinflammatory IFNs can overwhelm

the system, leading to the so-called cytokine storm and

inflammation. Induction of IFNs by coronavirus infection has

been proposed as a potential mechanism by which coronavirus

establishes persistent infection in cells in the central nervous

system (Li et al., 2010; Liu et al., 2011). It remains to be seen,

however, whether SARS-CoV-2 establishes persistent infection

more readily in individuals with DS as compared to the general

populations. Furthermore, several other factors may contribute

to this balancing act: (A) Transmembrane protease serine 2

(TMPRSS2) primes the S protein of the SARS-CoV-2 virus to

bind to its receptor, angiotensin-converting enzyme 2 (ACE2),

during infection (Hoffmann et al., 2020; De Toma and Dierssen,

2021) and ACE2 is an IFN-stimulated gene (Ziegler et al., 2020).

Since the TMPRSS2 gene is on Hsa21, its triplication leads to

its overexpression in DS, which in turn enhances the entry

of the coronavirus into host cells (Figures 1B, 2B; De Toma

and Dierssen, 2021); (B) SARS-CoV-2 appears to induce low

levels of type I and type III IFN responses and elevate IL-6

expression (Blanco-Melo et al., 2020), which might delay local

IFN responses and thus enable SARS-CoV-2 to evade recognition

and attack by immune cells in order to sustain its replication

(Acharya et al., 2020). Recent data demonstrated that, different

from mild-to-moderately ill patients, severely ill patients showed

a highly impaired type I IFN response and elevated level of

TNF-α and IL-6 (Hadjadj et al., 2020); and (C) Aging impaired

and delayed the production of type I IFNs (Bajaj et al., 2020)

and DS is associated with premature aging, which could be an

explanation for initial findings of a higher risk of mortality of

DS patients with COVID-19 at ages over 40 years (Huls et al.,

2021). On the other hand, as recently proposed, the unusual IFN

hyperactivation-related immune dysregulation in DS might in

theory also contribute to more frequent cytokine storms induced

by SARS-CoV-2 infection in individuals with DS (Bajaj et al.,

2020). Cytokine storm is considered as one of the major causes of

acute respiratory distress syndrome (ARDS) and multiple organ

failure (Ye et al., 2020). Consequently, COVID-19 patients with

DS may develop more severe complications and have a higher

mortality rate, as illustrated in the aforementioned study (Huls

et al., 2021; Figure 2B).

In addition, DS is associated with other comorbidities,

such as obesity, diabetes, hypotonia, obstructive sleep apnea,

craniofacial dysmorphogenesis, congenital heart defects, and

gastroesophageal reflux (Antonarakis et al., 2020; Startin et al.,

2020; Huls et al., 2021), which may lead to a higher probability

of developing more severe symptoms and elevated mortality

when infected with SARS-CoV-2 (Espinosa, 2020). Premature

aging, discussed in the preceding section, is possibly one of the

important risk factors for developing severe COVID-19 cases

among DS individuals (Horvath et al., 2015; Hithersay et al.,

2019; Gensous et al., 2020; Yu et al., 2020; Chen Y. et al., 2021;

Huls et al., 2021). Lastly, medical complications from COVID-19

developed in approximately 60% of patients with DS and

increased with age, which include viral pneumonia (36%), acute

respiratory distress syndrome (34%), and secondary bacterial

pneumonia (17%; Huls et al., 2021). Compared with the general

population, pulmonary complications were frequently presented

with significantly higher mortality in the DS population (Huls

et al., 2021). It is reasonable to link these complications with an

increased incidence of respiratory tract infections in DS, which is

associated with other DS-related abnormalities, such as aberrant

airway anatomy and physiology, hypotonia, aspiration, and

dysphagia (Bloemers et al., 2010). Moreover, IFN hyperactivity

and elevated IL-10 level may play a role in these complications,

particularly in secondary bacterial pneumonia in DS patients

(Espinosa, 2020).

Modeling and Analysis of Interplays
Between Ts21 and SARS-CoV-2
Understanding of the impacts of various factors on disease

processes of COVID-19 patients with DS has just been begun.

Additional knowledge will be gained by the generation and

analysis of model systems. Because of species-specific differences,

mouse ACE2 protein does not serve as a effective receptor

for SARS-CoV-2. Transferring a human ACE2 transgenic

allele, such as K18-hACE2, to a mouse model of DS is

required. The compound models could be used to ascertain

similarities and differences with human COVID-19, and the

effects of the DS-mimicking genetic background, which include

determination of whether viral replication kinetics are altered

in the DS-mimicking genetic background and assessment of

age-dependency of COVID-19 disease severity. The models can

also be used to understand the impacts of individual genes, such

as TMPRSS2 and MX1 by normalizing their gene dosages in the

compound mutants.

Aging has important effects on various organ systems in

mammals, and accelerated aging in DS individuals illustrates

such importance, which is reflected in early-onset AD and

hearing loss as well as more severe COVID-19 symptoms

at younger ages. A better understanding of the mechanisms

underlying these phenomena in individuals with DS and in

animal models will enhance our abilities to provide more

effective interventions to improve the quality of the lives of this

special population.
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